Use of Knowledge Discovery from Manufacturing Data for Yield Improvement

Patrick J Carroll
Yield & Integration Engineering Manager
RFMD, Greensboro NC

CS ManTech, Boston MA
April 24, 2012
The Scientific Method

• Taught early in science education
• Method used to advance science, prove or disprove theories
• In CS manufacturing industry, as scientists & engineers with device knowledge
 – May be used to tackle a manufacturing yield challenge
 – Observe the problem, Hypothesize the cause, Start experiments
 – May or may not result in root cause discovery
 – Cost of experiment & time
The Six Sigma Method

- Define
- Measure
- Analyze
- Improve
- Control

• For good manufacturing problem solving a more prescribed method is used
• DOEs are encouraged as opposed to One Factor at a Time experiments
• Experiments in a fab can be costly & time consuming
• Therefore, it is important to have the most complete knowledge possible before beginning that process
• This can be obtained using Knowledge Discovery from Data
KDD – Data Mining

- KDD
 - Knowledge Discovery in Databases
 - Knowledge Discovery and Data Mining
- From Wikipedia
 - The actual data mining task is the automatic or semi-automatic analysis of large quantities of data to extract previously unknown interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection) and dependencies (association rule mining).
- It is not Hypothesis Testing
- No Presumptions Made
- Learning what knowledge can be extracted from the data

KDD can be described as these steps

1. Assemble
2. Fix
3. Explore
4. Validate
Assembling Manufacturing Data for RF Products Made from Compound Semiconductor

<table>
<thead>
<tr>
<th>Level</th>
<th>Data Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boule</td>
<td>Supplier, Run #, Location</td>
</tr>
<tr>
<td>Substrate</td>
<td>Slice #, Mobility, EPD</td>
</tr>
<tr>
<td>Epitaxy (MBE,MOCVD)</td>
<td>Tool, Run #, Layer Thickness, Doping, Date</td>
</tr>
<tr>
<td>Wafer Fab (Patterning, Metals, ...)</td>
<td>Tools, Shifts, Operators, Process Control Data</td>
</tr>
<tr>
<td>Electrical Tests (PCM)</td>
<td>Rsh, Rcon, Capacitance, ...</td>
</tr>
<tr>
<td>Die Tests (KGD)</td>
<td>Circuit Measurements</td>
</tr>
<tr>
<td>Assembly (Die, Wiring, Molding , ...)</td>
<td>Bonding data, Components, Inspection, Location</td>
</tr>
<tr>
<td>Package Test</td>
<td>Final electrical test data</td>
</tr>
<tr>
<td>Customer Quality</td>
<td>Customer feedback, DPM, Field returns</td>
</tr>
</tbody>
</table>

- Data in multiple data bases across the globe.
- Data in various formats.
- Can the properties of the boule affect the performance and quality of your phone?
- How can we process all this data to solve a problem?
- Should we buy a system?
Assemble using The Universal Data Query (UDQ)

- Before the UDQ – All manual
 - Individual queries – Quality varied
 - Issues joining data
 - Issues with ‘bad’ data

- What is the UDQ? A single software tool to collect and join information from all relevant data storage sites
 - Written in JMP Scripting Language (JSL)
 - Obtains a list of lots of interest (Wafer or Package)
 - Queries tables from any of dozens of database tables located on various servers
 - Data is joined in JMP

- What are the advantages?
 - User doesn’t need special knowledge of each data source
 - Each table can be queried most optimally
 - Special knowledge to transform data built in
 - Known issue in data can be fixed
 - All data obtained quickly
Filter

- Automated data exploration requires automated filtering to prevent overlooking relationships

- A Common sense algorithm to filter outliers is Normalized Ordered Differences (NOD)

- Some standard ways to deal with outliers
 - Eliminate outliers for just cause term-by-term
 - Most Conservative
 - Most impractical for automation and a large set of terms
 - Apply a statistical test (e.g. +/- 3 sigma)
 - Tails are “cut-off” of legitimate non-normal distributions
 - Outliers may have a great effect on sigma
 - Use inner percentile of data (e.g. 5th to 95th percentile)
 - Data is eliminated from every term whether it is outlying or not
NOD Explained & Demonstrated

1,2 and 3 Mean Absolute Deviations from the Median Y

Before

After 2.5 NOD 3x
Explore – Finding Relationships

- JMP provides a number of techniques to explore data (e.g. CART, Best Models)
- We have developed a number of additional scripts to analyze and visualize the most statistically relevant relationships
 - Best Least Squares Fits to all numeric values arranged in order
 - User determines Degree of Fit
 - R^2 threshold
 - Display characteristics
 - Best 2 Parameter Fits

LSQ_Demo.avi
Explore Kruskal-Wallis

- Script available to generate Best Fit to Categorical Data using:
 - ANOVA [Prob (F Ratio)]
 - Kruskal-Wallis [Prob (ChiSq)]

- What is Kruskal-Wallis (KW)?
 - Kruskal-Wallis is a rank sum test
 - Data is evaluated by rank (smallest to largest)
 - The ranks are summed for each category
 - Expected ~ equal mean score if randomly distributed
 - A ChiSq test is done to determine if the difference in the sums is significant

- Why I like Kruskal-Wallis
 - Avoids some ANOVA assumptions about the data (e.g. normality)
 - Outliers have very little effect

Example of a Oneway Analysis using Kruskal-Wallis Rank Sum Test
With all the knowledge obtained from the data a better hypothesis can be made for the root cause of a manufacturing issue.

A experiment or DOE may still be needed to confirm in order to move from correlation to causation.

But the knowledge obtained may be sufficient to make a needed correction and confirm with manufacturing data.

Much more likely occurrence now.
Example – Improved Product Yield related to Epi Improvements

- Important New Product with wide Large Yield Variation due partially due to linearity fails
- UDQ used to join data from package product test to substrate
- Best Relationships to Linearity found among all data
- Several parameters found including a key parameter (Xquotient) related to MBE
- Yield improvement resulted from better screen of wafer starts
- Studies of MBE process resulted in improved wafer Quality:
 - Much improved process capability to linearity
 - Improved capability to other critical parameters
Conclusion

• In order to quickly identify likely causes to manufacturing issues, a KDD approach should be taken to Assemble, Fix and Explore existing data.
• The output of the process can be fully automated for common issues.
• By using the KDD process at RFMD, many opportunities for yield improvement have been found.
• A result of that is illustrated in the improvement shown in the composite Known Good Die (KGD) scrap rate of all technologies.
Acknowledgements

• The author would like to thank the wafer fab staff at RFMD for their support and contributions to yield improvement.

• Special thanks to the Yield Improvement Team

• Special thanks also to Yik Yang, Dain Miller and Nathan Conrad for contributions to the Universal Data Query.